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Photoelectric observations of the well-known eclipsing

binary system U Cephei commenced following the report of a

major outburst on the system in the summer of 19 74. Approxi-

mately 5200 measurements in the standard Johnson-Morgan UBY

system were obtained from October, 1974, through May, 1976.

The reported outburst was observed as well as another out-

burst of approximately the same intensity in the fall of 1975

The conventional Fourier analysis of the outside eclipse

variations failed to produce coefficients of the sine and

cosine terms in accordance with theory. A trial- and- error

approach produced the coefficients used in the rectification

procedure. A Russell-Merrill solution was obtained which

seemed to confirm the results of Hall and Walter. The light

curve synthesis approach of Wilson and Devinney yielded a

very similar solution, in which the observed asynchronism of

the primary component was used as an additional input

VI



parameter. The computer solution technique of D.B. Wood was

also attempted, but it failed because provision is not made

for the asynchronous rotation of the components. Residuals

of the observations in primary eclipse from the Russell-

Merrill solution revealed excess light during the outbursts.

This excess was modeled as hot source regions near the poles

of the primary star and rotating with that star. Shock

heating of the surface by infalling material is suggested as

the cause of the excess light. Excess temperatures range

from 7000 -1 7000°K, yielding mean velocities of the infalling

material in the range 12-21 km/s. A magnetic field on the

primary star is suggested as the steering mechanism for the

infalling material and conclusions based on the model are

discussed

.
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CHAPTER I

INTRODUCTION

H istory of the Observations of U Cephei

The variability of U Cephei (BD+81°25, HD 5679, ADS 830)

was discovered by Ceraski (1880) on 23 June 1880. It was

the seventh eclipsing variable discovered and displayed the

deepest primary eclipse known at the time. Because of its

circumpolar position at most northern hemisphere sites

(declination +82°) and its relative brightness (m =6.8-9.0),

it has been frequently and faithfully observed. The depth of

primary eclipse lends itself to rather accurate visual deter-

mination of the time of minimum. This rather substantial

bulk of data represents a detailed account of period changes

extending for almost a century. Two prediscovery observations

may extend the time scale to 150 years. Schwerd observed

U Cephei on 12 May 1828, to be two magnitudes fainter than

normal. Carrington estimated the variable one magnitude

fainter than normal on 30 December 1855. The earlier obser-

vation seems the more reliable. Lalande observed U Cephei

at normal brightness on 30 March 1790.

Early photometric observers concentrated on the primary

minimum. Schmidt, Knott, Wilsing, Chandler, Yendell,

Pickering, Searle, Wendell, Lehnert, and Bemporad helped to



confirm that the ingress branch is less steep than the egress

branch. Dugan ( 19 20) did the first complete photometric

study and found that the shoulder of the eclipse near first

contact was depressed, causing ingress to be less steep. He

invoked a tidal bulge on the primary star lagging the con-

junction by 24°. Although Cowling (1941) later showed that

this explanation could not be responsible for the observed

asymmetry, Dugan did show that some effects were present in

U Cephei that simple theory could not explain.

The next great step in understanding U Cephei came from

spectroscopy. The first orbital elements by Carpenter (1930'

found e = 0.47, u> = 25°. This considerable eccentricity was

in complete disagreement with the work of Dugan (1920), who

found secondary eclipse at 0.5P. Other spectroscopic studies

followed but all found a rather large eccentricity. Struve

(1944) was the first to suggest that a conventional approach

could not be used to obtain the orbital elements from the

radial velocity curve. He postulated a gaseous stream flow-

ing from the cooler toward the hotter star. At times the

spectrum of this stream would be seen projected onto the

primary (hotter) star, giving aberrant radial velocity mea-

sures. Such gaseous streams could also account for the

depression of the light curve around first contact.

Batten (1974) observed the system spectroscopically and

found rare instances of emission in the hydrogen lines.

These lines were red- displaced at second contact and violet-

displaced at third contact. The same sort of emission is
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more obvious in RW Tauri and Joy (1947) suggested a ring or

disk has been formed around the hotter star. The transitory

nature of the emission lines in U Cephei suggests that such

a ring is not a stable part of the system.

Another observational fact from the spectroscopic work

must be considered in any working model of U Cephei. The

radial velocity curve clearly indicates that the primary star

is rotating at five times the synchronous rate. This will

change the brightness distribution of the primary and cause

some change in the light curve.

Another step toward the understanding of U Cephei came

with the resolution of the so-called "Algol paradox." U Cephei

is an example of an Algol type system, in which the deeper

eclipse is an occultation. This requires the smaller star

to be the hotter, contrary to known stellar relationships on

the main sequence. Plavec (1973) has written a summary of

the most widely accepted explanation of this strange paradox.

Kopal (1959) reconstructs the development of the Roche

equipotential surfaces, which give a limit to the size of

each star in the system. If the stars are sufficiently close,

evolution of the initially more massive star will cause it to

fill its critical lobe. Further expansion is impossible, but

it can lose its mass through the inner Lagrangian point to

the less massive star. Calculations indicate that such mass

flow is initially self-sustaining and can, in most cases,

reverse the mass ratio. Several stages have been identified

for the mass loss, but the net result is to produce a system
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in which a cool, large star filling its critical lobe is

slowly losing mass to a rather hot, small, main sequence

star. This sort of evolutionary history can explain the

observations of U Cephei. The system contains a R7V primary

with a G8III (spectral types by Batten, 1974) filling its

critical lobe. The secondary star is more evolved and is

losing mass to the primary. We now have qualitative agree-

ment between the observations and the model. The model also

accounts qualitatively for the changes in period which have

been noted since the earliest observations.

The mass loss responsible for the gaseous stream in

U Cephei must be highly sporadic. Each episode of increased

mass flow should be accompanied by a sudden change in period.

Hall and Walter (1974) show several suspected period changes

separated by nine to eleven years. Walter (1975) has shown

that a p recessional period of twelve years for the primary

star is consistent with changes in the slant of the total

phase of primary eclipse.

Several photoelectric studies have recently been done

aimed at determining the rates of mass loss and period change

- 7
The once inconceivably large values of (2-5) x 10 M /yr.

are now accepted as the minimum values of mass loss for

U Cephei. Properties of the gaseous stream have been dis-

cussed in some detail by Batten (1974).

Attempts at solution of the light curve have always been

hampered by contamination of the light from the gaseous

stream. Hall and Walter (1974) have solved three sets of



independent data from Tschudovitchev (1950) , Khozov and

Minaev (1969), and Catalano and Rodono (1974) in order to

compare the geometrical parameters of the solutions. Their

results are probably influenced by some special assumptions,

but their work probably represents the first major attempt

to retrieve the true geometry from the confusing effects of

the gas flow using current theory.

Current Research

The present study was initiated by the report (Batten

et al., 1974) of a major outburst in the U Cephei system in

the summer and fall of 1974. During the course of the ob-

servations another major outburst occurred in the fall of

1975. These outbursts presented an unique opportunity to

obtain information on the dynamical behavior of the gaseous

stream and its affect on the hotter star.

This dissertation attempts to bring about the next step

in understanding the physical nature of U Cephei. The

modeling of the dynamic surface brightness distribution of

the primary star should unite the previous work concerning

the shape of the components and the properties of the gaseous

stream.

1 Consistent values of the geometrical parameters of the

system are essential before convincing theoretical arguments

can be made. Since variations in the light curve outside the

scope of the solution models were felt to be primarily in-

trinsic, considerable effort went into the accurate reduction
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ancl standardization of the data. These efforts occupy

Chapters II and III. The application of the Russell -Merrill

solution method depends on being able to correct the obser-

vations to the equivalent spherical model, i.e., remove the

variation outside of eclipse. The intrinsic variation in

U Cephei causes uncertainty in this "rectification" procedure

Chapter IV outlines the rectification procedure and results.

Chapter V deals with the solution techniques and results.

Chapter VI presents a new period study, employing all known

observations. With a new solution yielding consistent geo-

metrical parameters, a model can now be presented for nights

of high photometric activity. Chapter VII discusses this

model for the primary star. Chapter VIII concludes the work

with the model for the U Cephei system and predictions based

on the model.



CHAPTER II

INSTRUMENTATION

Observations were carried out on two telescopes so as to

cover the light curve in as short a time as possible within

the constraints of scheduling. The descriptions of both

photometric systems follows.

The Eighteen- Inch (46 cm.) f/10.5
R itchey -"Chretien System

The photometer was the same employed by K-Y. Chen and

D.A. Rekenthaler (Chen and Rekenthaler, 1966). It uses an

uncooled 1P21 photomult iplier operated at 900 volts. Two

diaphragms were used (see Chapter III) yielding diameter? of

86.2 and 42.5 arc seconds. The filters were ultraviolet

(Corning 9863), blue (Corning 5030 and Schott GC15), and

yellow (Corning 3389) , corresponding to the Johnson-Morgan

standard UBV system. Unfortunately, the telescope tailpiece

has a diagonal prism before the mount for the photometer.

This makes viewing through the photometer much easier, but

presents severe transmission problems in the ultraviolet.

In fact, it appears that the red leak component alone remains

in the "ultraviolet" band. An adapter was built of the

proper dimensions, so that good focus could still be achieved

without the diagonal prism. It was found, however, that the

-7-



new arrangement would not permit the telescope to reach the

declination of the variable. Yellow and blue observations

should be unaffected by the diagonal prism and, therefore,

were the only filter bands used for this system.

The signal is sent from the photometer to a newly de-

signed fast electrometer amplifier (Oliver, 1976). The fine-

gain range is such that the same coarse-gain step (5.0) could

be used for all observations. Tables 1 and 2 show the cali-

brations of the PA/10 amplifier for the nights of observation

On two nights (10/31/74 and 11/10/74) no calibration of

coarse -gain steps was done since no procedure was available

at that time. The mean of the 5.0 magnitude gain step was

used on these nights. Although rather large night to night

variation in the coarse-gain calibrations is obvious, cali-

brations at the beginning and end of each night show very

little variation (typically < 0^001) . The trend of the

calibrations suggest aging effects. A Heath strip-chart

recorder monitored the observations at h inch/minute.

The Thirty- Inch (76 cm.) f/16 Cassegrain System

The photometer used was the dual channel photometer of

the Astro-Mechanics Company, Inc. Only channel I was used

which incorporates an EMI 6256B (Sll) photocathode refriger-

ated with dry ice. The light was initially passed through a

dichroic filter which reflects 95% of the light between

3500 X and 6000 X into the light path of channel I and passes

80% of the light above 6500 X into the light path of channel
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II. The dichroic filter is typically used for simultaneous

photometry in the red and one of the UBV colors. It was

thought, however, that its insertion for this one channel

work would eliminate the problem of red leak which plagues

the broad band ultraviolet filter. A diaphragm of 15.2 arc

seconds was inserted in front of the photocathode . The

filters used for the ultraviolet (Corning 9S63), blue (Corning

5030 and Schott GC13), and yellow (Corning 3389) approximate

the Johnson-Morgan standard UBV system.

The amplifier was the PA-l/C, the latest version of the

PA-1, designed at the UCLA Astronomy Department and constructed

at the University of Florida. Even though the range of the

fine-gain steps is 5.0 magnitudes, not all observations could

be taken on the same coarse-gain step. The difference be-

tween the largest (variable-blue) and the smallest (compari-

son-ultraviolet) deflections was typically 6.0 magnitude?

outside of the eclipse on photometric nights. The variable-

blue readings are the only observations taken on a different

coarse-gain step. Calibrations were carefully done twice a

night for both the %- and 2%-magnitude gain steps and are

presented in Tables 3 and 4. The amplifier was quite stable

even in the Zij-magnitude gain steps and variation? during

the night were negligible.

Observations were monitored on a Honeywell strip-chart

recorder, which was replaced in January 19 76, by a Texas

Instrument strip-chart recorder. Observations were also

recorded on digital tape, the tape drive of which was replaced
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in January 1976. By inspecting the 'j-magni tude calibrations,

it appears as if the system was noisier prior to the instal-

lation of the new tape drive unit.



CHAPTER III

THE OBSERVATIONS

Introduction

Thirty nights of observation (ten and twenty on the

eighteen- inch and thirty-inch telescopes, respectively) have

yielded approximately 3200 measurements of intensity and

time for U Cephei. Table 5 lists the dates of observation

for each telescope.

The Close Companions of U Cephe i

Observations of U Cephei are plagued by the presence of

two close companions. The following table (Table 6) lists

properties of the stars of the system.

Observations of the two companions were made in 1881 and

1899. Aside from these observations, there is scant infor-

mation on these stars. The original observations by Knott

(Jeffers et al., 1963) gave A0 as the spectral type for both,

whereas later photoelectric work gave color differences more

consistent with G6-7 for B. The magnitude differences be-

tween these companions and U Cephei in conjunction with their

estimated spectral type indicate that C is probably a back-

ground object, while B is probably at the distance of U

Cephei

.

-15-
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Table 5

Date at the Beginning of Each Night of Observation

Eighteen- inch Thirty- inch

31 Oct. 1974

10 Nov. 19 74

15 Nov. 1974

25 Mar. 19 75

4 Apr. 1975

6 Apr. 1975

18 Sep. 1975

25 Sep. 1975

12 Oct. 1975

21 Oct. 1975

19
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Table 6

Properties of the Stars In and Near the U Cephei System

Star B-V U-B Sp. PA D

U Cephei

Combined

Primary

Secondary

B

C

6™$3 -0705

6.95

m
40

0.11 -0.43 B 7V

9.11 +0.88 +0.40 G8III

11.83 +0.73 +0.29 (G6-7)

12.9 A0(?)

62° 13V

8

321° 2 IV

2

From Batten (1974)

.

Figure 1 shows the positions of the companions super-

imposed on the smallest diaphragm of the eighteen- inch tele-

scope system. This diaphragm was used until 6 April 19 75.

An observing note on 10 November 1974, noted the two com-

panions with no diaphragm in place. Calculations show that

C is below the sky limit on all but moonless nights with

little haze. These conditions were obtained only on 10

November 1974, and 6 April 1975, when the smallest diaphragm

was still in use. Even under ideal conditions C is only

about 0.2 above the typical sky through the eighteen- inch

telescope system. Tests of the Fabry lens of the eighteen-

inch telescope indicate that edge effects may reduce the

intensity of C by half at its position. The maximum error

introduced by not correcting for C is 0.036 in the visual
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and 0.041 in the blue. The variable must be about 70% into

eclipse before the relative intensity of C compared to the

variable could introduce as much magnitude variation in the

light curve as the typical error of the observations (0.01).

For all these reasons C was assumed negligible and cor-

rections were made only for B on nights before 6 April 1975.

After that time the next larger diaphragm was used and both

companions were used for correction. Observations in eclipse

(i.e., 10/31/74, 11/10/74, 11/15/74, 04/06/75) were checked

for abnormal fluctuations after corrections and none were

found.

No such problems were encountered on the thirty- inch

telescope, since the chosen diaphragms were small enough to

consistently exclude both companions. On moonless nights of

superior photometric quality, deflections were taken on these

companions. Table 7 shows the magnitude differences with

respect to BD+81°29 of both companions in the three colors

as well as the ratio of intensities. The weights reflect

the quality of the other observations around the time of the

deflections

.

Reduction of the Observations

Observations were taken in the sequence comparison VBU,

variable UBV, comparison, VBU. The typical time between

consecutive variable star measurements was four to five

minutes. Sky readings at all gains used were taken every
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Table 7

Differential Magnitudes of the Close Companions
With Respect to BD+81°29
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Jj-hour on moonless nights, more frequently on nights with a

moon, and after every comparison star observation if the moon

was rising or setting. All sky readings were taken just

north of the comparison star in a field clear of stars.

Check star observations were taken two to three times per

night.

My initial reduction routine removed the effect of the

sky, found differential magnitudes (m -m ) and color' & v var C omp^

differences by linear interpolation. All data were then re-

checked on the strip-chart records to insure that all usable

data were free of keypunch errors.

The Reduction to the Standard UBV System

Stars in the Hyades cluster were used as standards. Two

observing runs were done on the thirty- inch telescope (one

run each on the eastern and western halves of the sky) and one

run of excellent quality was done on the eighteen- inch tele-

scope. Since the declination of U Cephei is almost +82°,

good atmospheric extinction information cannot be obtained

from the comparison stars. Extinction information from the

standard stars was used to transform the variable star obser-

vations to the standard UBV system. The symbols and equations

that follow in this section are those of R.H. Hardie (Hardie,

1962). Table 8 lists the data for the standard stars. The

stars were observed sequentially as given in the table and

this sequence was repeated four to seven times as the stars

progressed through approximately 1% air masses.
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Table 8

Data on Stars in the Hyades Cluster

Star BDi V B - V U - B RA (1950.0) Dec

72
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The second order coefficients were calculated first by

least squares solutions of Hardie's equations 25,

A(b - v) = kj;
v
A(b - v)X + A(b - v)

Q
,

A(u - b) - k-
b
A(u - b)X + A(u - b)

Q
,

where small case letters refer to observed quantities, X is

the air mass, and the second order coefficients are k," and
bv

k", . The A quantities in the equations refer to differential

measures between the standards. The procedure followed was

to take each standard star in sequence as the base star and

calculate the second order coefficients, using all the other

stars in combination with the base star. This yielded forty-

two determinations of each coefficient. Useful information,

however, can only be obtained between stars having suffi-

ciently different color indices. Table 9 shows the combina-

tions of stars used for each color index. Weighted means

Table 9

Star Combinations Used to Calculate Second Order Extinction
Coefficients

Nomenclature is that of Table 8.

B-V U-B

72-71

71-72

71-82

82-71

71-75

71-85

75-71

85-71

80-71
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were taken of the coefficients resulting from the above

combinations with the weights being the normalized ratio of

the coefficient and its standard error. The results of the

two runs on the thirty- inch telescope were averaged to give

the values used.

Having established values for the second order coef-

ficients, Hardie's equations 26 were used to determine the

first order coefficients, namely,

(b - v)J = k' X + (b - v)v ' x bv o

(u - b)G = k',X + (u - b)v J x ub J o

where J = 1 - k" X and G = 1 - k" , X. The first order
x bv x ub

coefficients were calculated for each star and straight means

taken to give the results of Table 10. The primary coeffi-

cient k is given by Hardie's equation 22,

v = v - k X .

o v

The coefficient k was also calculated for each star and

means taken. The large differences in the standard errors

quoted for the two telescopes are misleading in that the

error shown for the thirty- inch telescope results from two

nights and that from the eighteen- inch telescope from only

one. The latter error is more typical of the single night

error for the primary coefficient, whereas the former error

is useful for showing, but not strictly indicative of, the

range of k for photometric nights.
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Table 10

Extinction Coefficients and Auxiliary Quantities

Telescope
18 inch 30 inch
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AV = Av - k AX + eA(B - V)

A(B - V) = uA(b - v) - yk^AX - yk-
y
A(b - v)X ,

A(U - B) = i|jA(u - b) - i/jk'AX - ^k'*A(u - b)X .

Here A stands for differential quantities and X is the mean

air mass for the variable and comparison. The differential

air mass, AX, is given by,

AX = (Psin h + Qcos h + R)X
2

,

where h is the mean hour angle between the variable and com-

parison (positive east) and,

P = Aacos<J) cos6
,

Q = A6coscf> sinS
,

R = -ASsin<}> cos6

Here Aa and AS are the differences in right ascension and

declination in radians, respectively, and <j) is the observer's

latitude. P, Q, R are constant for a pair of stars and at

Rosemary Hill Observatory have the values,

P = 0.00248

Q = 0.00046

R = -0.00004

BD+81°29,

R = -0.00169

Q = 0.00130

R = 0.00011

BD+81°30.

The Comparison Stars

My original choice of a comparison star was BD+81°30.

This star has colors strikingly close to the variable and its
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proximity was also alluring. An early paper on U Cephei

(Dugan, 1920), however, indicates that this star may be vari-

able. It is interesting to note that most observers of

U Cephei still use BD+81°30 as a comparison despite the

warning. This may be due to the difficulty in finding a

nearby star of substantially the same colors or finding any

color information on the nearby stars. All data until 15

April 1975, used BD+81°27 as a check. On 15 April 1975, and

for all subsequent data, BD+81°29 was used as a comparison

and BD+81°30 as a check. This change required that data

taken earlier be transformed to the new comparison star.

Table 11 gives the pertinent information for all stars used.

Table 11

Data for the Comparison Stars

Star RA (1975.0) Dec V B-V U-B

BD+81°30
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BD+81 29 to transform them to differential measures with

respect to BD+81 29. These magnitude differences on the

natural photometric system are listed below.

Telescope

eighteen- inch thirty- inch

v -0.55 -0.65

b -1.13 -1.17

u -1.47

After all corrections were made, an inspection of the

light curve reveals no systematic deviations between nights

on the eighteen- inch and thirty- inch telescopes with either

comparison star. Thus all transformations are compatible.

The data reduced to the standard system were thoroughly

scanned and compared to the chart records to eliminate data

suspected of being affected by weather. These scanned data

are presented tabularly in Table 12 and as the light curves

of Figure 3. The phase has been claculated using the ephem-

eris Min JU = 2442352.6999 + 2^4930709 • E (see Chapter VI).

Two major outbursts were noted, one in August 1974, and one

in September/October 1975. Data around these dates were

eliminated from the initial analysis in an attempt to obtain

less perturbed light curves for solution. Specifically, the

nights of 31 October; 10 and 15 November 1974; 18 and 25
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September; 12, 15, 21, and 23 October 1975, were initially

eliminated.

Data in the region 0.12-0.25P show two distinct levels,

corresponding to observations separated by about one year.

Since the transformations discussed above gave consistent

results, this separation of about 0.1 appears to be real.

The question as to which level represents the "less perturbed'

state of the system is thoroughly discussed in the next

chapter.

Normal points were obtained by taking simple means of

the magnitudes in bins 0.005P wide. These normal points,

converted to intensity units and normalized, appear in Table

13 and are plotted in Figure 4. The normalization factors

were 4.330859 for visual, 7.790122 for blue, and 15.033S59

for ultraviolet. For reasons alluded to in the previous

paragraph and discussed fully in Chapter IV, the higher level

in the region 0.12-0.25P was not used in forming the normals

of Table 13. Observations on 25 March, 4 April, and 18

September 1975, form this higher level.
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CHAPTER IV

RECTIFICATION

Fourier Analyses

The initial Fourier analysis was obtained for normal

points taken as described above, including both levels in the

region 0.12-0.25P. These coefficients are labelled F, in

Table 14. Data in the regions 0.90-0.10P and 0.40-0.60P were

not used in the analysis in order to avoid the eclipses. The

defining relationship is

I = A„ + A, cos
(J)

+ A
2
cos2<}) + A^cos34> + A.cos4<J) + B,sint})

+ B
2
sin2# + B_sin3<j> + B.sin4<j)

The phase angle inside eclipse was rectified by

. 2, sin
sin $ =

2
1 - zcos .

with z = 0.021. The result of this Fourier analysis was un-

satisfactory since if left secondary eclipse inverted in all

three colors and put the bottom of primary negative in the

blue and ultraviolet. This was anticipated since the

shoulders of primary eclipse do not match for this choice of

normal points.

64
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Next a graphical analysis was made following the pro-

cedure of J.E. Merrill (Merrill, 1970). These coefficients

are labelled F_ in Table 14. This gave reasonable results

for A^ , but positive values for A., contrary to theory. The

B, and B., coefficients in the ultraviolet are quite un-

acceptable. Higher order harmonics may be present in the

blue and ultraviolet, which leads to the suspicion that even

the data treated here, considered to be less perturbed, are

somewhat affected.

At this point a reexamination of the data seemed appro-

priate. Two regions in particular were felt to be responsible

for the peculiar results of the first analyses. The region

from 0.75P to primary eclipse has a noticeable downward

trend, seemingly indicative of gas streaming effects. This

downward trend is a permanent feature of the light curve.

Likewise the dual level of light from after primary to 0.25P

requires resolution.

Consideration of the Roche model in conjunction with the

hydrodynamical gas streaming models (e.g., Prendergast and

Taam, 1974) indicate that during periods of increased activ-

ity, the light level just after primary should be slightly

depressed. Thus it was assumed that the higher level repre-

sented the "less perturbed" state of the system. The Fourier

analysis of the tops when the higher level is used, however,

again yielded aberrant results for A, . This result can also

be anticipated since no equivalent "less perturbed" level

exists prior to primary eclipse. A short region analysis of
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the same data excluding the points greater than 0.75P did not

improve the situation. The cause of this failure, however,

seemed to be that the solution was not sufficiently con-

strained to yield valid results.

Similar Fourier analyses were run to test the results

when the lower level after primary is used. These coeffi-

cients came closer to matching theory, especially in the

ultraviolet. The same short region analysis indicated in

the previous paragraph seemed to improve the situation in

the visual and blue. The same caution concerning the con-

straint on the solution should be emphasized here, especially

in view of the very unusual values obtained in the ultra-

violet. These coefficients are listed as F, in Table 14.

A recent solution of the U Cephei system by Hall and

Walter (1974) obtained Fourier coefficients closely matching

theory by means of a very short region analysis in the region

0.25P to just before secondary eclipse. This is probably the

only region of the light curve relatively undisturbed by gas

streaming effects. When this approach was applied to my

data, completely unrealistic results were obtained. Hall and

Walter's analysis is on only five normal points to find A
n ,

A,, and A- . It would seem mathematically fortuitous that

such a procedure would yield usable results. In addition,

these three coefficients cannot account for the harmonic

variation of the tops of the light curve. At this point

numerical least squares methods were abandoned since con-

sistent, realistic results seemed impossible to obtain. The
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lower level following primary eclipse yielded the most en-

couraging results and will be used in the next analysis.

The data for the graphical solutions were now reexamined.

If only terms up to 2<J) are important, then linear solutions

result from the graphical approach. Data points which

deviated significantly from the apparent linear solutions

were temporarily ignored, in order to obtain better approxi-

mations to the more important terms. This approach appeared

to reap better results. Using the linear coefficients thus

obtained, a process of trial- and- error was followed to obtain

the other terms and better the approximations to the linear

terms. During the trial-and-error process, the following

guidelines were helpful:

1) Fix the coefficients to approximate theory;

2) Produce flat tops to the light curves tempered with

knowledge of known nonconformity from other solu-

tions
;

3) Fix the sine terms to reproduce in shape the total

portion of the unrectified primary eclipse;

4) Produce secondary eclipse of roughly the same depth

as the original data.

The following comments need to be emphasized about the

above guidelines:

1) Number one may not be important since U Cephei is

known to be highly unstable. It was thus accorded

low weight in the trial-and-error process;
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2) Number two was adhered to so long as terms up to 4<f>

were still apparent in the residuals;

3) Number three is valid only as long as the sine terms

affect both eclipses in a similar way. The secondary

eclipse was sufficiently shallow in the blue and

ultraviolet to render it useless for this determina-

tion. The shape of the rectified curve in the total

portion of the primary eclipse is somewhat sensitive

to the sine terms, and the complete symmetrization

of the eclipse cannot be achieved without doing severe

damage to the resulting total portion. Assuming gas

streaming to be important in the observed asymmetry,

such gas streaming cannot be rectified by any simple

combination of sine terms. Guideline three was used

as a compromise, realizing that the full asymmetry

could not be removed by the sine terms;

4) Number four was very difficult to achieve, especially

in light of guideline three. The resulting secondary

eclipses were shallower than have been previously

reported. A possible explanation for this will be

discussed in a later chapter.

The resulting coefficients of the trial-and-error process are

labelled F. in Table 14. These will be used in the initial

solution, with the caution that rerectification may be

necessary. A word about the errors of the coefficients

listed in Table 14 seems appropriate. The machine solutions

do indeed yield errors for the coefficients. These errors,
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however, are mathematical in nature, dependent upon the num-

ber of coefficients to be solved for in the solution. They

are important as an indication of the mathematical signifi-

cance of a given coefficient, but beyond that their use is

illusory at best. The errors involved in the graphical

approach and especially in the trial- and- error approach would

be difficult to evaluate and have not been given. The coef-

2ficient of determination, r , is given to indicate the

"goodness of fit" for the graphical solution.

Listed in Table 15 are the theoretical reradiation

coefficients, C
Q

, C,, C„ , obtained from the theory of Russell

and Merrill (1952). Using their equations 107 we have

C, = -A, = 0.40(G - G, )sin i11 v c h '

- G + G

C
Q

= -(0.75 - 0.25cos i)
G
c

_ Q
n A^sc i , (4-1)

G
c

+ G
h

C
?

= -0.25 ^—-—p— A, sin i

c h

where i is the angle of inclination. In order to obtain

G + G, and G - G, , use Russell and Merrill's equation 104,

G
c
/G

h V E
h / J

c
/E

c • C 4
" 2 )

where J's are apparent surface brightnesses and E's are

luminous efficiencies. If we assume that the J's can be

given by Planck's law, then the E's are given by,

E
X,T

= J
X,T/oT
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Table 15

Reradiation Coefficients

Russell -Merrill Theory

Aeff *

Visual
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where a is the Stefan- Bolt zmann constant. We can write J, ~

as,

c A~
5

J, m *
X,T c /AT

e
z -1

- 5 2 -

1

where c, = 3.74 x 10 erg cm sec ,

c.-, = 1 . 439 cm deg,

A is wavelength in cm,

T is temperature in degrees Kelvin.

Letting,

3 = c
2
/T ,

and expanding (e - 1) by the binomial theorem, the maxir.um

value of 8 can be obtained by differentiating E. T with re-

spect to 3 and setting the result equal to zero. This result.

for a specific wavelength in,

3 » 4 ,max

Letting,

A,T max

and

A,T max

it can easily be shown that,

log(J/E
2

) = 3.0946 - 81og3 + log(e 3
- 1) . (4-3)

Using approximate values derived from my Wilson-Devinney

computer solution (Wilson and Devinney, 1971) of U Cephei
,
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equation (4-3) is solved for both stars. Then equation (4-2)

is solved and the results are inserted into equations 108 of

Russell and Merrill in the form

G + G,
c h

hi"
2

!
Ci ij

J^c'h c h

rrG
G
h

=

L^h
v J -

(I IJv c h c h

where the I's are the specific intensities of the stars and

the r's are the fractional radii of the stars. Equations

(4-1) then yield C~ , C, , and C
?

. In the absence of effects

other than reradiation, C, equals -A,.

Rectification Formulas

The following formulas were used to rectify the inten-

sities with the coefficients F. of Table 14. The formulas

follow from the Russell-Merrill theory.

Visual

I' = I - 0.0-40 + 0.023cosc{> + 0.013cos2<{>

- 0.0065sincj> -
. 0122sin2c(> + 0.012sin4c

I" = 17(1.034 - 0.003cos2<|)) ,

Blue

I" =

I + 0.030 + 0.020cos(J) + 0.010cos2<f>

- 0.023sin<j> - 0.005sin2<}> + 0.010sin4<>

I'/(1.006 + 0.004cos2(J))
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Ultraviolet

I' = I + 0.010 + 0.018cos<}> + 0.003cos2<J)

- 0.020sinc}> - 0.005sin2<|) + 0.008sin4cf) ,

I" = I '/ (1 - 014 + 0.0007cos26)

where $ is the phase angle and I the observed intensity.

No. ice that in the blue, the constant term on the right hand

side of the first equation is not C
fi

. Some adjustment was

necessary to obtain a better fit. The coefficient of cos2cj)

in the same equation was also adjusted from the model value

c
2

.

Table 16 shows the mean intensities after the above

rectification taken over quarter phase intervals. No obvious

residual periodicity remains that can be accounted for by

sine or cosine terms up to 4<J).

In light of the guidelines stated earlier for the trial-

and-error analysis, it would be instructive to examine the

relative success of each before proceeding with the solution.

By carefully examining Table 14 it is clear the size and sign

of several of the coefficients (notably A and A
?

) are

critically dependent upon the particular set of data used

in the Fourier analysis. This seems to support the observa-

tion made earlier that some residual perturbations remain of

which proper account cannot be taken by the standard analysis.

Indeed, these perturbations should be expected since the

observations were taken during a period of increased activity.

It appears doubtful, in fact, after examining light curves

of U Cephei from past epochs, whether anyone has observed
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this system in a state when problems with the formal rectifi-

cation do not arise. It would seem advisable, therefore, to

find a set cf coefficients which closely resemble what one

would expe;t from the Russell-Merrill theory. Table 16 shows

that some nonconformity exists of which gas streaming models

can, hopefully, take account. Overall, however, no severe

damage is done to the light curve by achieving the first

guideline. Table 16 also shows that the second guideline

was reasonably successful, expecially in light of the pre-

ceding discussion.

Table 16

Mean Intensities Outside of Eclipse After Rectification

Interval

Color 0.0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 0.0-1.0

Visual 0.9885 1.0093 1.0004 1.0005 0.9997

Blue 0.9709 1.0047 1.0198 1.0075 1.0007

Ultraviolet 0.9591 1.0003 1.0367 1.0037 1.0000

The eclipses are rather insensitive to any sine term

adjustment since the functions are smallest here. It was

noticed, however, that changes of 201 in the coefficients of

the sine terms had a perceptible effect on the slant of the

total eclipse. The maximum effect of the sine terms occurs

at quadrature points. Close examination of the residuals
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near the quadratures show a much better fit of the rectified

curves to unity than even Table 16 (which has already been

noted as being passably good) reveals. It appears, then,

that requiring the sine terms to preserve the shape of the

observed total portion of the light curves favorably affects

the rectification outside of the primary eclipse.

The agreement in the depths of the secondary eclipses

between the rectified and original data was the most dif-

ficult of the guidelines to achieve. Any adjustment of the

cosine terms to achieve a reasonable fit in the secondary

eclipse resulted in a deterioration of the fit outside

eclipse. Examination of Figure 3 shows that only in the

visual is the secondary well defined. The blue data show

only a hint of the eclipse and it is invisible in the ultra-

violet. Notice also that the scatter (presumably intrinsic

to the system) is much greater in all colors just after O.SP.

The visibility of the eclipse makes it difficult to work with

in all but visual light and even there the scatter during

egress causes additional problems. Less weight was placed,

therefore, upon achieving the final guideline.

The difficulties presented here in achieving a workable

rectification of U Cephei seems to have been minimized in

previous attempts at solution. These difficulties are pri-

marily responsible for the noticeable lack of all but

preliminary solutions of the system. We have in U Cephei,

however, an outstanding opportunity to gather information

about the geometry of the system. The total primary eclipse
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is the ideal case for eclipsing binary systems. A patient

approach to the solution should reap rich rewards, not only

in the geometry of the system, but also in further under-

standing of the dynamics of these unstable close binary

systems. Three solution procedures were followed in order

to compare the geometrical properties of U Cephei. The

Russell-Merrill solution is presented first. Following this

solution are the computer approaches of Wilson and Devinney

and David B. Wood.



CHAPTER V

THE SOLUTIONS

The Russell-Merrill Solutions

Nomographic Solutions

Figure 5 shows the normal points inside of primary

eclipse from Table 13. It is obvious that some asymmetry

exists and that this asymmetry is . not simply a result of an

inaccurate ephemeris, since the asymmetry increases with

decreasing wavelength. This asymmetry has long been known

for U Cephei. For solution purposes symmetric eclipses are

required. Assuming that gas streaming effects are responsible

for the lower level of light on the ingress branch, only

egress was used for the Russell-Merrill solutions. Egress

is presumably less affected by these perturbations and the

resulting solution should be much closer to the true geo-

metrical parameters.

The previously noted difficulty with the secondary

eclipses made it very difficult to get a reliable nomographic

solution. From the estimated depth of secondary eclipse in

the visual (0.9595), a nomographic solution was done. Solu-

tions only exist for limb darkening coefficients greater than

0.4. This solution fit the primary eclipse rather poorly.

It was discovered that a good fit to the primary eclipse



79

could not be obtained using the observed depth line. In

fact, acceptable solutions for primary eclipse could only be

obtained for a secondary eclipse considerably deeper than

that observed. Due to the observational scatter after 0.5P

and the poorly determined eclipse in the blue and ultraviolet,

less weight should, perhaps, be given to the secondary

eclipse. Little information will come from the secondary

eclipses and progress beyond a preliminary solution will be

difficult by the Russell -Merrill approach.

Some further attempt was made to restrict the area of

the nomographs in which solutions lie. Since the depth line,

given by,

(1 - l
tr

)/l°
C

,
o J o '

has a very well determined denomiantor due to the deep total

primary eclipse, any range in solutions can be ascribed to

t r
variations in the numerator. Values of 1 consistent with

o

the observed depth of secondary eclipse give depth lines 50°

tr
less than values of 1 giving good fits of primary eclipse.

Values for the depth line vary from 0.2 to 0.4. There is

insufficient constraint here to make the nomographic solution

meaningful

.

Perturbations in secondary eclipse are probably respon-

sible for the unusually shallow depths. The assumption was

made, therefore, that the observations do not show the

expected variations due to the transit eclipse and the

secondary eclipses were not used for solution purposes. An
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important constraint on the problem is thus removed and great

care must now be taken to insure physically reasonable re-

sults .

The jj Solution

The
\l>

function is given by,

2 2
sin if - sin (ji, _ n ,

.

* - —2 : (f^l^±_ (5 . 1}
Sin (a-0.6)- Sin (a-0.9)

where subscripts refer to the value of the phase angle, p, at

the specified value of a, which, for an occultation eclipse,

is simply the fractional light loss. Values of $ for a =0.6

and a =0.9 can be read directly from the light curve and thus

ijj can be calculated for any other value of $ . Tables of the

iJj function have been provided by J.E. Merrill (Merrill, 1950a.)

in terms of x (limb darkening coefficient), k (ratio of the

radii), and a. It is more convenient, therefore, to choose

values of <j> at tabular values of a. Having calculated \b for

each of these phase angles, the tables are entered to deter-

mine k for some particular value of x. Table 17 shows the

results of these calculations. Also given in Table 17 are

A = sin cf>(a = .6)

B
oc

= sin
2
<J)(a = 0.6) - sin

2
<f>
(a = . 9)

It is clear from the mean values of k and their standard

errors that the coefficient of limb darkening is a difficult
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Table 17

(Continued)

Blue

A°
C

= 0.068609 B
OC

= 0.043689

oc

0.05
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Table 17

(Continued)

Ultraviolet
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quantity to determine. Some idea of the limb darkening

coefficient may be obtained by comparing the if) solutions with

another solution approach described below. Notice the trend

of calculated k values in Table 17. A peak is reached in all

colors midway through the eclipse branch and the smallest k

values occur near the bottom of eclipse. This shows the same

trend evidenced in many eclipsing systems, i.e., that the

same value of the ratio of the radii cannot be applied through

out the eclipse. Superficially, this states that the ob-

served light curve is not of the simple shape predicted by

the Russell-Merrill model. It is tempting to make further

conclusions, but this would not be fruitful until some of the

perturbing effects are better understood. Upon calculating

some sample light curves using the mean k values of Table 17,

it was found that limb darkening coefficients near 0.6 fit

slightly better in the visual and blue, but x values near

0.4 fit slightly better in ultraviolet. These values will

act as a guide in selecting the preliminary solution in con-

junction with the results of the next solution attempt.

The Intermediate ty Solution

This approach was suggested by J.E. Merrill and is out-

lined in Princeton Observatory Contributions Number 26, page

2
59ff. The procedure is to take weighted means of sin $ for

three groups of light levels taken at the top, middle, and

2bottom of the eclipse curve. Group I includes sin <\> values

corresponding to a values of 0.05, 0.10, 0.20, and 0.30 with
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weights 2, 2, 2, and 1, respectively. Group II uses a values

of 0.50, 0.60, and 0.70 with unit weights. Group III in-

cludes a values of 0.95, 0.97, and 0.985 with weights 1, 2,

2
and 2, respectively. The weighted means of sin

<J>
for each

group are designated M, , M
?

, and M, , from which a value, R,

can be calculated as follows,

M - M
2

R =
M - Mu
2 3

Using equation (5-1) in the form,

, oc , . 2 , aOc. /n oc
ty

= (sm 4) - A )/B ,

it is clear that,

M
1
[sin

2
(f

) ] = A + BM^] ,

M
2
[sin

2
4>] = A + BM

2
CtJi ] , (5-2)

M^[sin
2

(j)] = A + BM-|>] ,

where M, [i|>]> M~[iJ>], and M_[^] are the weighted means in i{j

2corresponding to the previously calculated M, [sin $ J

,

2 2
M
2
[sin <j>], and M_[sin <j>]. From equations (5-2) it follows

that,

R =
M
2
L^J - M

3
OT

Merrill has provided tables giving values of R, M, [i{j], M
?
[ip],

and M_[^] as a function of k and x for both occultation and

transit eclipses. Given the value of R, inverse interpolation



-86-

yields k, M^i/j], M
2
[i|j], and M-C^p] . Then equations (5-2) are

used to obtain values of A
C

and B°
C

. Table 18 shows the

results of this procedure.

The usefulness of this technique is that it produces

values of k which fit the entire run of the eclipse. In that

sense it is probably preferable to taking means of the k

values obtained in the \\> solution. Examining the results of

the two methods shows that k is the same for x = 0.6 in the

visual. The comparisons in the blue and ultraviolet are not

as good, but the differences are smaller for small values of x.

The Adopted Solution

The real test of the solution is the fit to the observa-

tions. Many of the above solutions were plotted against the

observations, including some past solutions by other authors.

The intermediate \\j solution given by x = 0.6 seems to be the

best fit in the visual. This solution was clearly preferred

and an attempt was made to keep the value of k sensibly

around the value for this solution (k = 0.6026) in the other

two colors, without doing damage to the fit of the observa-

tions. This lead to the
ty

solution given by x = 0.6 for the

blue, which fitted the observations quite well. The preferred

solution in the ultraviolet was the intermediate 4> solution

for x = 0.2. This seemed clearly better than the others.

The solutions seemed close enough to assume that they

should be identical for wavelength independent parameters.

The average value of k for all the previously mentioned
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Table 18

The Intermediate ty Solution



"best" solutions was taken and i/j values calculated for this

o c o c
value of k. The A and B parameters ivere then adjusted

until the internal and external tangency points agreed for

all colors. This insures the same value of inclination.

These new "mean" solutions were then plotted against the

observations. The fits in the visual and blue remain quite

good, but this approach failed for the ultraviolet. The

solutions listed in Table 19, then, are the "mean" solutions

for the visual and blue, but the previously determined "best"

solution for the ultraviolet. In Table 19, i is the
' r

"rectified" inclination, r the fractional radius, and L the

fractional light, where subscripts g and s refer to the great-

er and smaller stars, respectively. Also listed are the

geometrical parameters when the effects of rectification are

removed. Figure 5 shows the normal point intensities during

primary eclipse along with the eclipse curves given by these

solutions

.

The values of Table 19 represent a good preliminary

solution to U Cephei. A procedure has been outlined (Russell

and Merrill, 1952) to proceed to a refinement of the solution.

Unfortunately, the procedure requires some good light values

inside of secondary eclipse. As has already been noted, this

cannot be done for the light curve of this epoch. The pre-

liminary solution is, then, all that can be reliably obtained

from these data. As a comparison to past solutions, Table 20

lists elements, authors, and epochs.
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Figure 5. The primary eclipse is plotted in the three
colors from the data in Table 13 as points.
The solid curves represent the Russell-Merrill
solutions given in Table 19.
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The Wilson-Devinney Solution

The computer solution technique of Wilson and Devinney

(1971) was employed using the same normal points as the

Russell -Merrill solution. The Wilson- Devinney program

(hereafter called W-D) uses the Roche model described in

detail by Kopal (1959) . Since U Cephei is an example of an

Algol type eclipsing binary and mass flow has been observed

spectroscopically , the assumption was made that the secondary

component fills its Roche lobe. This assumption corresponds

to mode five of the W-D program, which also couples the

luminosity (L~) and temperature (T~) of the secondary through

the Planck function. Provision has very recently been made

to allow the user to employ the model atmospheres of Carbon

and Gingerich (1969) for either star. This provision, how-

ever, was not available at the time of this solution.

A new feature of the W-D program allows the user to

specify an asynchronous rotation rate for either star. Since

spectroscopic evidence indicates that the primary component

of U Cephei is rotating five times synchronous, this value

was used for that star while the secondary was allowed to

rotate synchronously.

The free parameters were divided into two sets. Set one

consisted of i, the inclination; T
? ,

the polar temperature of

the secondary; £L , the potential of the surface of the

primary; q, the mass ratio; and L, , the luminosity of the

primary. Set two included G, , the gravity exponent for the

primary (this is 1.00 for the von Zeipel law); G~, the same
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as G, for the secondary; A
?

, the bolometric albedo of the

secondary; and x, , the limb darkening coefficient for the

primary. Each of these sets contain only one wavelength

dependent parameter (L-. for set one and x, for set two) . The

three colors were solved simultaneously in order to find the

wavelength independent parameters which best represented all

colors

.

The polar temperature of the primary, T, , was set at

13,600°K from the spectral classification of Batten (1974)

and the temperature scale of Morton and Adams (1968). The

B7V spectral type of the primary indicates that the atmosphere

should be entirely radiative and A,, the bolometric albedo of

the primary, was, therefore, set equal to one. The limb

darkening coefficient for the secondary, x 9 , should be rather

small since its atmosphere is extended out to the Roche limit.

The distortions evident in secondary eclipse suggest that

x~ should be fixed to avoid spurious results and was, there-

fore, set equal to zero. The parameters A
?

and G
?

depend

upon the shape of secondary eclipse as well and should,

therefore, suffer from the same distortions. They were found,

however, to converge rather quickly.

The following technique was used in the solution: An

initial set of parameters was chosen from previous solutions

and set one was allowed to vary. The indicated corrections

were made and rerun using set two as free parameters. These

corrections were then used with set one and so forth until

the indicated corrections were smaller than their probable

errors. Another indicator of the convergence of the solution
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was that the sum of the squares of the residuals should con-

tinue to decline from run to run. As a check the reverse

procedure was also followed, i.e., set two was used first,

then set one, etc. The solutions were the same for both

procedures, indicating that the global minimum had been

found

.

Set two converged very quickly, but the parameters of

set one were rather highly correlated and converged rather

slowly. After set two had converged, the parameters in that

set were fixed at their solution values and set one was sub-

divided into two less highly correlated sets. Set la in-

cluded i and L, , while set lb consisted of T_ , ft,, and q.

The same alternating run method described above was used to

achieve convergence in these parameters. Table 21 shows the

results of the solution. In that table, r n _..-_.,,,„ is the

radius of the star in the direction facing the other com-

ponent, r,, o-vRAfi' i s the radius in the direction facing

away from the other component, r,, »,_ Tnp is the radius in

the orbital plane perpendicular to the line of centers, and

r n 71PDTF * s t 'ie radius perpendicular to the orbital plane.

Figure 6 shows the solution curve plotted with the normal

points for the entire light curve and Figure 7 shows the fit

of the solution curve to the normal points in primary eclipse

The D.B. Wood Solution

The computer solution technique of D.B. Wood (1972),

called WINK, was used as a check on the previous solutions.
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Table 21

The Wilson-Devinney Solution

Wavelength Independent Parameters

i = 82?22 Q = 6.911
±15 l

± 34

G, = 0.46 Q = 3.1429 (computed)
1

± 5
L

G_ - 0.99 q = 0.644
c

± 2 ±8
Tj = 13600°K (assumed) A, = 1.00 (assumed)

1 = 5454°K A
?

= 0.41
1

± 13
Z

± 2

Wavelength Dependent Parameters

A (X)
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Figure 7. Same as Figure 6 for the primary eclipse
only.
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It models the components of binary systems as tri-axial ellip-

soids. WINK allows for eccentricity of orbit, non- linear limb

darkening and model atmospheres for the stars. Conversion of

the solution parameters from W-D to the as trophysi cal space

of WINK supplied the starting point for the differential cor-

rections. The first set of free parameters used included i,

Ty > r
i > the equatorial radius of the primary perpendicular to

the line of centers, q, and QUAD MAG, the magnitude at 0.25P.

This set failed to converge after six iterations, principally

because the value of q was corrected from 0.6 to 1.83. The

mass ratio enters the calculations through the shape of the

stars rather than through the potentials as in the Roche

model. As such, it is a rather poorly determined quantity

for this model.

The next attempt at solution used i, T 9 , r, , and QUAD

MAG as free parameters. This run converged in three itera-

tions but produced a partial primary eclipse, contrary to

observations. The value of r, came from the W-D solution,

which incorporated a rather large asynchronism for the

primary star. This causes an equatorial bulge on the primary

star. The mass ratio from the W-D solution, however, re-

quires this star to be nearly spherical, so that using the

large value of r, from W-D made the star too large and pro-

hibited a total eclipse. This demonstrates that U Cephei is

just marginally total, which can also be seen from the loci

of solution points on the nomographs of Merrill.
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Reducing the initial value of r
1

to the polar radius of

the W-D program again caused convergence in three iterations.

The primary eclipse was total, but of much shorter duration

than observed. The solution tended to enlarge the radius of

primary. In all of these solutions the values of i, T
? , and

QUAD MAG were only nominally corrected by the program.

Any progress in the solution beyond this stage would

probably be illusory and the solution by WINK was abandoned.

Some interesting conclusions can, however, be drawn. The

source of distortion in shape for the tri-axial ellipsoid

model is tidal forces. The primary star in U Cephei is

abnormally distorted by rotation. WINK models this distor-

tion as the influence of a massive companion. The mass ratio

is, therefore, reversed in order to account for the shape of

the primary. The WINK program is apparently not very useful

for systems of asynchronously rotating components. More

importantly for U Cephei, however, is that the effect of the

asynchronous rotation is visible in the light curve.



CHAPTER VI

THE PERIOD STUDY

The Current Ephemeris

The times of primary minima were determined by bisection

of the lower portions of primary eclipse. Inspection of the

light curves in this portion of the eclipse reveals that any

asymmetry is minimal. On those nights when the entire eclipse

was not observed, the eclipse curve near the bottom was

superposed with other minima close in time. The depth of the

eclipse is sufficiently great that only small time errors are

introduced in this way. The times of minima used for the

determination of the ephemeris are shown in Table 22.

Table 22

Observed Times of Minima Used for Ephemeris Determination

Heliocentric Julian Date 0-C

244 2352.6933 -0^007

2362.6699 - .002

2367.6598 .002

2509.7623 - .001

2524.7225 .001

2646.8816 - .067

2873.7393 - .012

2903.6698 - .001
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Several techniques were used to calculate the current

ephemeris

.

1) A plot of the residuals (0-C) for the times of minimc

listed in Table 22 from the light elements given by

Tchudovitchev (1939) yields a sloped line from which

a new period can be found.

2) A least squares fit of all photoelectric times of

minima in the interval of my observations (Rafert,

1977) gives T , the initial epoch and P, the period.

3) A similar least squares fit to all times of minima

(including visual determinations) in the same inter-

val (Rafert, 1977) yields a third ephemeris.

The mean of T and P for these three techniques gives the

current light elements as,

Min J D = 2442352.6999 + 2^493071 • E ,

± 3 + 4

where E is the cycle count from the initial epoch. This

ephemeris was used to calculate the phases of Table 13 and

the O-C's of Table 22.

The 0-C Diagram

The data and computer programs used in the following

sections are due to Rafert (1977). Figure 8a shows the

residuals (O-C's) of the times of minima from the light

elements 2407890.2957 + 2^4929005 • E given by Tchudovitchev

(1939). A parabolic regression of this data weighted to the



Figure 8. The observed minus the computed times of

minima using the ephemeris 2407890.2957
+ 2^49 2900 5 are shown in part (a) vs. the

cycle count. Part (b) shows the residuals
from the solid line parabolic fit through
the data of part (a)

.
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precision of each determination yields,

MIN J D = 2407890.421 + 2^4928089 • E + (8.68 x 10~ 9
)E

2

± 11 ± 28 ±17

which is shown as the solid line in Figure 8a. The residuals

from this parabolic fit are shown in Figure 8b. Hall (1975)

has suggested that many small amplitude parabolas superpose

upon the major parabola, which may indicate enhanced mass

transfer. Alternatively, the residual curve (Figure 8b) may

indicate a sine term. Rafert (1977) has shown, however, that

if a sine term is present, it does not remain phase coherent

during the run of the data. While either of these alterna-

tives has its physical cause, neither seems well enough

established to be of use in predicting future behavior. The

recent residuals from the parabolic ephemeris are quite small

and it appears as if this ephemeris continues to predict the

times of minima very well with only minor amplitude and time

deviations

.

One important astrophys ical quantity can be derived from

the parabolic ephemeris above. If conservation of mass and

steady mass transfer are assumed (both of which are suspect

in view of the history of U Cephei) , then one can deduce the

mass transfer rate. Let

d4
= p t 6 -^

where T is the time of minimum. Integrating this expression

yields the ephemeris,
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T = / P • dE . (6-2)

The assumption of a steady mass transfer rate can be written

as

P - P + § ' E
•o dE

Substituting into equation (6-2) and integrating yields,

T = T + P • E + i ~ E
2

. (6-3)oo 2 dE y J

We may write dP/dE as,

dP - dP
.

dt
(f, A^

BE - dt dE (6 " 4)

and substitute equations (6-1) and (6-4) into (6-3) to obtain

T=T +P • E + (i P ^5)E
2

. (6-5)oo 2 dt y v '

This is the form of the parabolic ephemeris given above. If

we denote the quantity in parentheses in equation (6-5) by A,

then for a unit time interval,

-p —7 • (6-6)

If an amount of matter Am > is transferred from a less to a

more massive star (which is the conclusion of the spectro-

scopic data for U Cephei) , then the resultant change of period

is

AP _ 3(2y - l)Am
P y(l - u)m
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where m is the sum of the masses and u = m,/m, m, being the

mass of the primary star. Using equation (6-6) and the

parameters of the parabolic ephemeris,

AP/P = 2.79 x 10" 9

Using the masses derived by Batten (1974) of m, = 4.2 ± 0.6 M

and m = 2.8 ± 0.5 M , one obtains,
2 ©

'

'

Am = 7.81 x 10~ 9
M /cycle

= 1.14 x 10" 6
M /year

'

The residuals shown in Figure 8b make it apparent that the

times of minima do not strictly show the parabolic shape ex-

pected for this steady mass transfer rate. Large deviations

from the mean mass transfer rate may be expected. These

deviations may have several causes.

1) The hydrodynamical model of Prendergast and Taam

(1974) shows that a small percentage of material is

lost from the system. This loss not only deprives

the system of that mass, but also removes the angular

momentum of that mass. The loss of angular momentum

changes the period.

2) The mass may be transferred rather sporadically to

give the overall mean transfer rate. The spectro-

scopic work of Batten (1974) supports this conclusion.

After an extensive search of many spectra of U Cephei,

Batten was only rarely able to report emission in

the Balmer lines of hydrogen. Such emission lines
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show radial velocities indicative of a gaseous stream

toward the primary star. The events reported in this

dissertation, however, were accompanied by the ap-

pearance of a very strong emission in the Balmer lines

as well as lines of other elements. This suggests

that the mass transfer rate was especially great at

these times. It is unlikely that these events are

unique which suggests that mass transfer in U Cephei

is rather sporadic.

3) The sustained high rate of rotation of the primary

star is presumably a direct cause of the mass trans-

fer. Particle trajectory calculations show that the

transferred mass is quite effective in increasing the

rotation of the primary star. Angular momentum from

the transferred mass which goes into rotational

angular momentum behaves, however, just as if it had

been lost to the system in so far as period changes

are concerned. Wilson and Stothers (1975) give an

expression to estimate the ratio of the period change

due to this so-called non-conservation of angular

momentum (NCJ) to the period change due to mass trans-

fer (MT) given above. If k is a factor between zero

and unity which depends on the latitude at which the

gas stream hits the surface of the primary and RM is

the ratio of the masses in the sense m-,/m
?

, then,

dP

dP
NCJ

MT
- 0.69 k

(1 t RM)
1/5

RM
' 77 (m

2
}

0.11

Tl - RM) ,T7T
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If we adopt the parameters nu = 2.8 M, P = 2^4928089

,

k = 0.8, and RM = 1.55, then,

(dP/dt) xirT , -, = -1.58 (dP/dt) MT . (6-7)v 'NCJ (max) v ' MT y J

In the real system the orbital angular momentum of the

transferred mass is not completely converted into rota-

tional angular momentum. Mechanisms may also be

present (see Chapter VII) to cause the gas stream to

strike the surface of the primary at higher latitudes

,

thereby reducing k. Equation (6-7) indicates, how-

ever, that these two causes of period changes are

competing and may be comparable. The neglect of NCJ

will yield a mass transfer rate which is a lower limit

to the true rate

.

The fit of the least squares parabola to the data in

Figure 8a may lead one to question the choice of a parabola

as the functional form. In fact, two straight line segments

joining at about 9000 cycles (1940) may yield residuals at

least as small as the parabolic residuals.

Evidence for Recent Period Changes

The more recent data of Figure 8a were reanalyzed in an

attempt to find the best ephemeris for accurate predictions

of future times of minima. Figure 9a shows the times of

minima from November 1965, until June 1976, using the same

light elements as Figure 8a. Small changes in slope appear



Figure 9. Part (a) shows the 0-C diagram for the times
of minima from November 1965, until June 19 76,

using the same ephemeris as Figure 8. The
three straight line segments represent the
least squares fit of these segments, the
residuals of which are shown in part (b)

.
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near cycles 13278 (February 1971) and 13730 (March 1974).

The data were divided into three sets at these points and

separate linear regressions produced the solid lines drawn

through the data. The resulting light elements are listed

below.

Set 1 Min JD = 2439086.7724 + 2
<

?4930634 • E

Set 2 Min JD = 2440991.4802 + 2
<

?4930765 • E

Set 3 Min JD = 2442118.3508 + 2?493058 • E

± 10 ± 19

2 + 2
<

?4930765
5 ± 28

8 + 2?493058
±19 ± 10

The errors quoted are standard errors. If one accepts these

results as significant, the period changes amount to 1.3 x 10

s - 5 s
day (1.1) between sets 1 and 2 and -1.85 x 10 day (-1.6)

between sets 2 and 3.

Olson (1977) has used "11 essentially undisturbed

eclipses" by Hall and Keel, R. Crawford, Scarfe, and Olson

between November 1974, and November 1976, to calculate the

light elements

,

Min JD = 2442377.6242 + 2^4930709 • E .

This ephemeris has the advantage of being based on photo-

electric observations, but includes far fewer observations

than, my set 3. The differences between the periods of my

set 3 and Olson's or of my current ephemeris and Olson's are

not significant in view of the errors of each determination.

If Olson's values are used, then the period change between

sets 2 and 3 becomes -9.1 x 10 day or -0.79.
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If sets 2 and 3 are combined and a linear regression

performed, the mean ephemeris is,

Set 2 and 3 Min JD = 2440991.4811 + 2
<

?4930699 • E .

± 7 ± 15

This ephemeris compared to Olson's indicates that the period

has not changed significantly since February 1971. In fact,

if only the photoelectric observations are considered, the

noted period change about March 1974, is difficult to see.

This is not to say that the visually determined times of

minima are to be ignored. The accuracy of photoelectric

observations may, in fact, be a handicap in this case. The

previously mentioned changes in shape of the primary eclipse

can make an accurate determination of the time of minimum

difficult. The rather limited sample of photoelectric times

of minima may bias the sample by reflecting these types of

errors. The great number of visual determinations, while

individually not as accurate, may, en masse
, provide a better

determination of the ephemeris

.

The sudden changes of period noted above may be an in-

dication of sudden mass transfer. If such is the case, a

major event may have occurred prior to March 1974. One must,

however, question why no such sudden period change has occur-

red to signal the events of the summer of 1974, and the fall

of 1975. One possible explanation is that the time base of

the observations since these events is not sufficiently long

for a change to be noticed. Alternatively, the changes of
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period produced by mass transferred in these events may have

been cancelled by changes of period produced by the orbital

angular momentum of this mass being temporarily converted

into rotational angular momentum of the primary star.



CHAPTER VII

THE MODEL

Introduction

The purpose of this model will be to test the effect of

abnormal surface brightness distributions on the residual

light in eclipse. It would be convenient if an analytical

solution could be found. Analytic forms for the light changes

during eclipse on stars with normal surface brightness dis-

tributions (i.e., fractional linear limb darkening accounts

for the brightness distribution) have been given by Tsesevich

(1973). Unfortunately, these integrals cannot be solved in

closed form since they involve elliptic functions. Solution

of the eclipse integrals for abnormal brightness distribu-

tions is still more difficult. A numerical procedure was,

therefore, employed to solve for the eclipse curves.

Before beginning a discussion of how the surface bright-

ness distribution was constructed, it would be instructive to

examine the residuals from the solution in primary eclipse

given in Figures 13 to 25. The successful model must deal

with the following observed facts.

1) For most of the observed eclipses, the residual light

was in excess of the solution.

2) The variation of the residuals throughout the eclipse

seemed to be smooth.

117-
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3) On nights of high photometric activity (during major

outbursts) the variation of the excess seemed to

display the same dual-peaked type of profile. Nights

of rather low activity seemed to vary in a less

regular manner.

4) During major activity the excess disappeared at or

near second contact. The excess drops to zero before

first and fourth contacts.

5) The peaks of the excess before and after totality on

10 November and 15 November 1974 (see Figures 15-18)

show a slow rise, rapid decline before totality and

a rapid rise, slow decline after totality.

The following conclusions and assumptions can be made

incorporating these facts.

1) The observations were normalized using the same in-

tensity as unity, regardless of whether the observa-

tions were used in the formation of normal points for

the solution. This suggests that positive residuals

represent a surplus of light and negative residuals

a deficiency of light from the predictions of the

Russell model. This apparently simple conclusion

determines the normalization of the theoretical model

if it is to represent the observations.

2) The apparent smoothness of the variation of the excess

light indicates that one extended source is respon-

sible.
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3) This source of the excess must originate on the

primary star since it tends to disappear during

totality. The geometry of the solutions indicate

that the contact points fall in the polar regions of

the primary (the latitude on the primary of second

and third contacts is 54.78). Since the excess light

falls to near zero at second contact and begins anew

near third contact, one suspects that the source of

the excess is in the polar regions of primary. This

assumption does not exclude other possibilities and

other positions of the source will be tested. The

decline of the excess to zero before first and fourth

contacts indicates that the source is not visible at

these times

.

Constructing the Test Grid

The loss of light during eclipse can be modeled by sum-

ming the contributions from a grid of test points representing

areas on the eclipsed star. The eclipsing star plays no role

other than adding its luminosity (L
?

) to the total light and

acting as an occulting disk. The eclipsing star should pre-

sent a nearly circular cross -section during primary eclipse

and no detectable ellipsoidal type light variations should

result. Additionally, in the case of U Cephei, the secondary

star contributes relatively little to the total light and

small variations in its light will be unimportant. The

eclipsed star is modeled as circular and is eclipsed by a
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circular disk moving in a circular orbit. The inclination of

the system is taken into account as is any desired degree of

limb darkening on the eclipsed star. All computations are

projected onto the plane of the sky.

The coordinate system used for the computations is on

the plane of the sky. The x-axis is in the line of sight,

the y-axis connects the line of centers of the two stars at

quadratures, and the z-axis is perpendicular to the y-axis in

the plane of the sky. Figure 10 diagrams the coordinate

system and shows the primary star for perspective. Notice

that the north pole of the primary star is tilted toward the

observer by the compliment of the inclination angle and that

this pole will remain fixed on the primary star as it is

projected on the sky throughout the orbit.

A test grid was established on the primary star using

test points to represent equal areas on the surface of the

star. These test points are then projected onto the y-z plane.

The grid is built up in concentric rings about the projection

onto the sky of the sub-earth point (the origin of coordi-

nates) . Let there be NP test points representing NP equal

areas on the visible hemisphere of the star. Since we see

only one hemisphere, then each equal area must be,

A = 27rr^/NP ,

where r, is the fractional radius of the primary star. The

first of these areas will cover the origin. This is the sur-

face area of a spherical cap on the x-axis. This spherical



Figure 10. The geometry of the model and the source
regions. Part (a) shows the coordinate system
used to construct the test grid. The test
points lie on the sphere and are given by
angles 6, measured radially from the sub-earth
point, and a, measured counterclockwise from
the +z axis. Part (b) shows a typical source
region as constructed in the model. This
diagram is for 0.0P so that the physical
interpretation of 1\ and 1? can be shown.
The projected equator of the star is drawn
as a dotted curve and to represents the direc-
tion of rotation.
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cap has surface area,

123-

A = 2irr,h ,

P 1

where h is the extent of this cap on the x-axis and is given

by,

h = r, (1 - cos3 )
1

v

p
y

3 is the radial angular measure from the sub-earth point to

any point on the star and g is the extent in 3 of this

spherical cap. Thus,

A = 2irr, (1 - cosB )

P 1 P

and we would like A = A. This constraint gives 3 as
P P

1 " NP
= COsB

p
(7-1)

The remaining range of 3 is tt/2 - 3 and we now divide

this remaining range into n concentric rings of equal angular

extent, A3. The test points will fall in the middle of each

ring and the last ring of test points will be on the limb.

This requires

A3 =

M
2

A3 =
tt - 23

P
2n + 1

(7-2)

The angles, 3, at which the test points will fall are given by,

A3
+ (2m - 1) 2f (m= 1, 2, 3, . . . , n + 1) . (7-3)
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If the grid areas, A, are small enough, they may be ex-

pressed as elemental surface areas of the sphere or,

2
A = r, singAaAg ,

where a is measured clockwise around a ring of test points

beginning at the +z-axis. Setting the two expressions for A

equal gives Aa as

Aa =
2lT

(NP)A3 sinB

A8 and 6 are given by equations (7-2) and (7-3), respectively

The symmetry of the test grid requires the calculation of

positions for test points in one quadrant of the visible

hemisphere only. The complete grid is then obtained by mir-

roring this quadrant throughout the entire hemisphere. The

longitudinal angle, a, need only run until tt/2 for the cal-

culation of positions in this quadrant. It would be coinci-

dental if an integer number of segments, Aa, occupied a ring

in the quadrant of interest. Test points representing dif-

ferential areas, Aa by A3, are given unit weight, whereas the

fractional area remaining in the quadrant is given weight p,

where

P - 7T- - INT fej-l
* 2Aa l 2Aa'

and INT represents the integer part of the quantity in paren-

theses. Thus the angle, a, for each test point is given by

a = (m - l)Aa (m=l, 2, 3, . . . , INT
(~)

)

(7-4a)
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and for the final test point on each ring in the quadrant by,

a
f

= j O - pAa) . (7-4b)

The test points given by equations (7-3) and (7-4) must

now be projected onto the y-z plane. The y and z coordinates

of each test point are,

y = r, sing sina

z = r, sinS cosa

The unit normal intensity of each test point must be modified

by the foreshortening angle, y ,
given by,

cosy = cos3

The Progression of the Eclipse

The programmer is free to test the level of light through

out eclipse at any specified interval of phase angle given in

degrees. The first such level corresponds to the first phase

angle outside of external tangency, <j> , where,

2 2

7
(r + r

? ) - cos i

sin^ - -i L^_
,

sin i

and r
2

is the fractional radius of the secondary star, and i

is the inclination of the orbit. This level represents the

full light of the eclipsed star. The contributions of all

the test points for a normal surface brightness distribution

are used as a normalizing factor for all other light levels.
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Test points are considered to be eclipsed if the distance

from the point to the center of the eclipsing star is less

than r~. The center of the eclipsing star describes an

ellipse on the sky as the orbit progresses. At any phase

angle, <}> , the y-z coordinates of this center are,

y c
= -sine})

z = -cos* cos i
c Y

At present the major source of error in the procedure occurs

by neglecting partially eclipsed test areas. If a test point

is uneclipsed, it is entered into the summation of intensities

given by,

I '(40 =
I (1 " x + x cosy-) cos Y- w - • (7-5)
i

In equation (7-5) x is the limb darkening coefficient and w.

the v\/eighting factor for each test area (either one or p) .

The summation extends over all uneclipsed test points. The

cosy factor outside the parentheses accounts for the diminish-

ing size of the test areas as the limb of the star is

approached. For a test grid of 4000 points, this procedure

reproduces the light levels of the Russell-Merrill method to

± 0.0005, standard error. If L is the result of equation' norm M

(7-5) for the first point outside of eclipse, then the other

light levels are normalized by,

I'O) L

K40 = ~L
+ L

2
.

norm
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where L^ and L^ stand for the lights of the primary and

secondary stars, respectively.

Th e Geometry of the Source Region

In view of the above considerations, a geometry of the

source of the excess light can be proposed. To retain suf-

ficient choice in the location of the source, it can be

modeled as either a band centered on the equator or as polar

sections (hereafter called the polar source regions) . Since

inclination is considered in the model, the latitudinal

limits of the source (hereafter called the north or south

limit) are small circles on the star which become ellipses

projected onto the sky. The equatorial band will lie between

these limits, whereas the polar source regions lie northward

and southward of these limits. If 6 is the angle above or

below the equator of these limits, the centers of the pro-

jected ellipses lie at,

y, =7 lc

z, = ± r„ sin!
lc B

These will be similar ellipses of semi-major axes along the

y-axis of r cosG and semi-minor axes along the z-axis of

r, cose cos i. The functional form of these ellipses can

then be written as,

y~2 T
r, cos (

(z + r sine)
+ -* i x- - l

r, cos
2 27
G cos i
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Th e lower half of each ellipse is on the visible hemisphere,

so that,

z
north

= " cos i>/r
i

cosZe " y
2

+ r
x

sin6

Z
south

= " C0S i/r^ cos
2

- y
2

- rj sine , (7-6)

where z
north

and z
south

are the corresponding z values on the

north and south limits for a given value of y. The argument

of the square roots will be negative for y-values whose

absolute values exceed the semi-major axis. The y-coordinate

of each test point on the star is inserted into equations

(7-6) to determine the latitudinal limits. The z-coordinate

of each test point is then compared to the computed zr north
and Z

south
for P0SS1Dle inclusion in the desired source region

Those test points meeting the latitudinal condition are

then tested in longitude for membership in the source region.

The longitudinal limits (hereafter called right and left

limits) represent great circles on the star. In order to

simplify the calculations, these circles intersect on the

z-axis at the projected limb of the star. These intersections

would be the poles of the star for an inclination of 90°. In

general, one would like to use great circles intersecting at

the true poles of the star. The projection of these circles

onto the sky, however, yield functional forms of degree four.

The simplified forms that were used confine the use of the

model to inclinations close to 90°. The great circles used

in the calculations become ellipses when projected onto the
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sky. These ellipses will be centered on the origin with a

semi-major axis of r, along the z-axis. The semi-minor axis

may be determined knowing the coordinates of a point on the

ellipse and solving for b in,

2 2

T , 2
1

r
l

b
(7-7)

We would like the source to rotate with the star (either

synchronously with the orbital rate or at any specified

value). The left and right limits can then be given as an-

gular deviations (1, and 1_) from the z-axis at 0.0P. The

coordinates of the intersection of the line of centers with

the equator of the star can be used to solve equation (7-7)

for b. These are,

Oc

'Oc

r, sine

r, coscj) cos l

where
<J)

is the phase angle. This point will be on the z-axis

at 0.0P. The intersections of the desired ellipses with the

equator are then,

r
1

sin (<f>
+ 1 )^2c

z
2c

= -T
1

cos C<J>
+ lj) cos i (j = 1, 2)

Solving (7-7) for b yields,

b
2

.

2 . 2 ,
r

n
sin (i hi

2 2
cos (4) + 1

.
) cos i

(j = 1, 2)
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Now (7-7) can be used as a condition on y for test points

that meet the condition in equations (7-6). The y condition

is,

/ (r
2

- z
2

) sin
2 U + 1J

y L ,R
=±

V7-
i 2-—— fT C5-1.2). (7-8)

' y 1 - cos (4> + 1 .) cos i

Care must be taken to resolve the sign of y, D for each phase
L , K

angle. Should one of the ellipse segments fall on the back

of the star for a particular phase angle the appropriate limb

of the star is used for that limit. The greater of 1, and 1 ?

corresponds to the left limit.

Those test grid points lying within the limits given by

(7-8) and meeting the desired latitudinal limits of (7-6) are

within the source region of interest. These points are

entered into the summation of intensity (7-5) with the coef-

ficient of limb darkening equal to one (in lieu of some better

assumption) and a multiplying factor I , i.e.,

I* U) = I I
s

w
k

cos
2

yk
(7-9)

k

The weights, w, , have the same meaning as in (7-5) and the

summation extends over all test points in the visible source

region. The constant I is the ratio of the point intensity

normal to the star's surface in the source region to that

elsewhere on the star. It enters the summation in a natural

way and can easily be converted to a temperature excess (or

deficiency) in the source region by,

AT = Tj (I
s

)

4
- Tj , (7-10)
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where T is the temperature of the primary star and Planck's

law is assumed. Equation (7-5), for test points outside the

source region, and equation (7-9), for test points in the

source region, together give the intensity of the star with

an abnormal surface brightness distribution. This intensity

is normalized in the same way as the normally bright model.

The user may, in addition, place a shell of attenuating

material about the equatorial regions when the source region

is a polar segment. This is accomplished by supplying a

positive, non-zero value for x, the optical depth. The ef-

fective optical depth for any test point is given by,

x
e

% x/cosy
,

and equation (7-5) is then modified by the multiplying factor
- x

e
e

.

The list of input parameters reads as follows:

i, the inclination of the orbit. The rotational axis of

the primary is assumed perpendicular to the orbital

plane

;

r, , the fractional radius of the primary star;

r~, the fractional radius of the secondary star;

L,, the fractional light of the primary;

L_, the fractional light of the secondary (L, + L = 1);

I , the intensity ratio of the source to the normal star;

9, the latitudinal extent of the source above and below

the equator of primary;

NP, the number of test grid points on the visible hemi-

sphere of primary;
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n, the number of concentric rings of test points on

primary;

INTcj), the phase angle interval (in degrees) at which the

light levels are computed;

x, , the limb darkening coefficient of the primary;

t, the optical depth of the attenuating cloud;

1, , the longitudinal deviation (in degrees) of the left

hand limit of the source from the y-axis at mid-eclipse;

1-, same as 1, for the right hand limit;

MODE, 1 for a polar segment source, 2 for an equatorial band.

The flexibility of the model allows one to test a great

many theoretical situations, such as:

1) any type of primary eclipse. Notice that by exchanging

the role of primary and secondary, the same model can

also be used to test abnormal brightness distributions

on the secondary star during secondary eclipse;

2) hot or cold (I < 1) source regions in the polar

regions of the primary;

3) hot or cold source regions on the equator of primary;

4) an attenuating cloud about the equator either in

combination with a polar source region or by itself

(set I
s

= 1);

5) a polar source region rotating synchronously with the

primary star rather than synchronously with the orbit.

This was felt to be non-physical for a source region

on the equator, presumably caused by infalling materi-

al from the secondary star. At present this is a
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change in a source statement in the program, but it

may become an input parameter if sufficient usefulness

is demonstrated. Notice that the rate of asynchronism

of the primary must be its synodic period with the

line of centers rather than its spectroscopically

determined sidereal period.

Residuals from the model with a normal surface brightness

distribution are formed which should correspond to the residu-

als of the observations from the Russell-Merrill solution.

Figures 11 and 12 show some residual curves computed for the

situations given above.

One piece of as trophysical information is also given by

the model. Assuming that a hot source region is formed by

infalling material heating the surface, a mean velocity of

this material can be calculated by,

-/3 kAT
m

where k is Boltzmann's constant and m is the mass of a par-

ticle. Most of this material will be hydrogen and thus m is

the mass of a proton. The mean velocity does not account for

the efficiency of the supposed shock heating and assumes a

Maxwellian velocity distribution for the infalling material.

As such, this mean velocity probably represents a lower limit.

Fitting the Model to the Observations

The first set of models tried to fit the observations

using previous suggestions for the location of the source





13S-



136

region. Figure 11a corresponds to an equatorial band at the

impact location of the main gas stream of particle trajectory

models. The location of this source cannot be varied greatly

and must rotate synchi onously with the orbit. Such a model

has severe dif ficultie: accounting for the sudden disappearance

and reappearance of the excess light at second and third con-

tacts. The source region remains eclipsed for a large range

of the primary' eclipse. The excess light is also approaching

maximum at first and fourth contacts, contrary to observation.

A recent model by Olson (1977) found that dark regions

of rather large extent must exist on the equator of the

primary to account for substantial dips in the light curve

around phases 0.2P and 0.6P. My observations clearly show

part of the dip at 0.6P on 12 October 1975, and may also show

the dip at 0.2P (see Chapter IV). Figure lib shows the result

of my model for the dark region causing the dip at 0.2P. The

other dark region suggested by Olson is not visible during

primary eclipse. This model shows the same difficulty as the

main gas stream hot spot model. Additionally, the residuals

are negative. It may be that such dark regions were not

evident during my observations of primary eclipse.

At this point attention was turned toward polar source

regions to explain the observations. The previously mentioned

behavior of the excess light near the contact points put

severe constraints on the possible longitudinal extent of the

source region. The return of the residuals to zero before

first and fourth contacts suggests that the source cannot be
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visible at these times. The source region cannot, therefore,

rotate synchronously with the orbit, since the phase range of

eclipse is not sufficient to turn the source through the

visible hemisphere.

The spectroscopically observed rotation rate of the

primary star is five times the synchronous orbital rate. The

synodic period of rotation relative to the line of centers of

four times synchronous is then observed for any fixed point

on the primary star. The polar source need not rotate syn-

chronously with the orbit as the equatorial source should.

The assumption of the source showing the rotation rate of the

star is not only a physically reasonable assumption, but

probably the best way to model such a polar source. Examples

of the residuals derived from an asynchronously rotating

polar source are shown in Figures 12a and 12b.

The procedure for fitting the observed residuals was one

of trial- and- error . The number of free parameters in the

model (I., 6, t, 1, , 1~, as well as MODE, and the rotation

rate) would seem prohibitively large to expect unique solu-

tions. Certain of the free parameters, however, are uniquely

correlated to observed features of the excess light. From

the previous discussion it would seem that the most productive

assumption for residuals like those observed on 10 November

1974 (see Figure 15) would be a polar hot source rotating

with the primary star. This fixed MODE as one and also the

rotation rate. For this source it was discovered that the

peak in the observed residuals fixed 9 to within three degrees.
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Th e ratio of the heights of the peaks during ingress and

egress determine the difference 1
?

- 1,. The rise of the

ingress peak determines 1, and the decline of the egress peak

fixes 1~. Once these parameters have been estimated, the

height of the peaks determines I . The use of the optical

depth, t, is more poorly correlated to the observations, If,

however, one assumes that only one source is responsible for

the residual light, the residual profiles similar to 4 April

1976 (see Figure 22) may be modeled by the use of x. Any-

positive non-zero value of t will result in negative residuals

Nights which show positive residuals were then modeled using

zero for t. It appears then that rather unique solutions can

be found for any particular night and it is hoped that the

night to night variations can be modeled by small changes in

the parameters.

Table 23 shows the "best" fits for the observed eclipses.

Plots of these models with the corresponding observations are

given in Figures 13-25. No attempt was made to model ultra-

violet observations for two reasons. The scatter in the

ultraviolet observations is greater than in the other two

colors. Inspection of Table 23 shows that eclipses that were

observed in all three colors also occurred during periods of

relatively low activity, with the exception of 15 October

1975. The effects that the model attempts to explain are

very small at these times. As is the case with all models

that attempt to account for natural phenomena, this model

also has limits of applicability, beyond which the prudent
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Table 23

The Model Parameters for the Observed Eclipses

Date Color I 9 1, 1
2

t AT(°K) v (km/s)

10/31/74 V 9.0 65° 45° -45° 0.00 9956 15.7

B No attempt to model -- large scatter

11/10/74
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investigator dare not go. Observations of finite accuracy

must not be modeled below the ability of the instrument to

detect the variation. It is for these . reasons that a com-

plete set of graphs is provided for the visual and blue

observations of primary eclipse so that the reader may decide

whether the results of Table 23 to indeed match the trends of

the observations.

One further note of explanation seems required. Those

eclipses that have been modeled with non-zero values of T

probably represent an underestimate of the optical depth.

The obscuring cloud responsible for the optical depth was

assumed to cover the entire equatorial region from -6 to 9.

It is likely that such a simplifying assumption is not the

case, but rather that such a cloud is of less latitudinal

extent and that t may vary across the star's surface. Eclipses

which required non-zero values of t, however, do indicate that

some obscuring cloud is necessary to fit the observations.

The nights of 31 October 1974, and 6 April 197S, seem to

display the same type of behavior in the visual and, there-

fore are plotted together on Figure 13. The parameters are,

however, not definitive for these nights, since only the

ingress branch was observed. Particularly affected will be

the values of I , 1, , and 1
?

.

The night of 10 November 1974, showed the highest level

of activity (see Figures 15 and 16) . The success of the model

in fitting the rising branch of the ingress peak and the de-

clining branch of the egress peak is particularly encouraging.
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Figure 20. Same as Figure 13 for the nights of 21 April
1975, and 21 August 1975, in the visual band.
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The straight, line segment about 0.0P indicates the total

portion of the eclipse, during which no contribution from the

primary star is present, and therefore, no abnormal brightness

distribution effects can be modeled. The observations clearly

show that some excess light is present at second contact and

that the excess appears well before third contact. The

probable cause of this excess light is material falling onto

the source region seen projected onto the sky above the limb

of the primary. As the primary star again becomes visible,

the source region on the star quickly becomes responsible for

the excess light. This same type of behavior is evident in

the egress branch on 15 November 1974 (see Figures 17 and 18).

The behavior of the excess light during ingress on 15

November 1974, is more complicated than the model can present-

ly fit. Striations in the source region may be responsible

for this behavior.

The nights of 21 April 1975, and 21 August 1975, were

particularly interesting (see Figure 20). There appears to

be no indication of any source region during these eclipses.

Both eclipses were observed during periods of low activity

and seem to indicate that an attenuating cloud had been formed,

A synchronous cold polar source such as in Figure lid may also

fit the observations, although the physical reasons for such

a source are obscure. Since only ingress was observed for

both eclipses, no attempt was made to find the best fit.

These nights, however, will be important in determining the

chronological behavior of U Cephei.
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The eclipses of 25 September 1975, and 15 October 1975

(see Figure 21), occurred during the fall 1975, outburst.

Unfortunately, the weather conspired to limit the data for

these eclipses. The level of activity is very high and 25

September 1975, gives the only evidence that the main stream

hot sopt (Figure 11a) may be responsible for the excess

light.

The data for 4 April 1976, were also limited, but the

model curves drawn in Figures 22 and 2 3 give some indication

that the model can represent these observations. The model

chosen here was an attenuating cloud about the equator in

combination with a polar hot source which is behind the star

until well into the eclipse. The rather flat distribution of

points in ingress indicate that other explanations are pos-

sible, but the data are insufficient to distinguish between

the possibilities. One alternate explanation is that an

equatorial cold source similar to those postulated by Olson

(1977) precedes the polar hot source.

The two eclipses observed in May 1976 (see Figures 24

and 25) were quite difficult to model. The egress peak

occurred quite late and is broader than the previous eclipses.

The large drop in light just after third contact is difficult

to model as is the rather gradual decline just prior to fourth

contact. The model parameters quoted in Table 23 are in

parentheses because of the uncertainty of the fit. The model

indicates a polar hot source of mild intensity but great

extent (to account for the late egress peak) , but no great
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confidence can be placed in these results. The level of

activity is rather low and other effects may be as large as

those this model was designed to describe.



CHAPTER VIII

THE U CEPHEI SYSTEM

The Geometrical Parameters

An inspection of the two solution attempts given in

Chapter V reveals that they fit the observations equally well.

The only noticeable differences in primary eclipse (see

Figures 5 and 7) occur in the total portion of the ultra-

violet eclipse. Recall, however, that the Russell-Merrill

solution for the ultraviolet is not the same as the solutions

for the visual and blue, whereas the Wilson-Devinney solution

solved the three colors simultaneously.

The depression of the ingress branch of primary eclipse

is a well-known phenomenon in U Cephei and these observations

show it clearly. The depression becomes somewhat more severe

in shorter wavelengths, in agreement with the widely accepted

notion that a gaseous stream flowing toward the primary star

is responsible. This gaseous stream is projected onto the

surface of the primary star during ingress, producing the

depression. At other times in the orbit, however, it can add

its light to the system without covering one of the components.

As the stream hits the surface of the primary star, shock

heating will create additional light. Taken together, these

effects are probably responsible for the small amount of

172-
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light that seems to be necessary in the blue and to a greater

extent in the ultraviolet for the W-D solution. Although no

third light was added in the solution, its addition would

account for the discrepancy noted in the total portion of the

ultraviolet eclipse. If third light is indeed necessary, its

source is rather hot gas with the impact heating caused by

the gaseous stream as the primary candidate.

The W-D solution was successful in fitting the secondary

eclipse in the visual. Neither solution attempt was able to

fit the secondary eclipse in the blue or the ultraviolet.

The blue light curve in secondary eclipse gives the impres-

sion of extra light near the beginning of the eclipse,

effectively retarding the normal ingress branch. Since these

effects were not visible in the visual band on the same

nights, the disturbing influence must once again be rather

hot gas. I shall return to this point again in the discussion

of the primary star.

The light levels in primary eclipse for the two solutions

are very close, leaving the residuals unchanged. The solu-

tion parameters needed by the model are also very close in

the two solutions, resulting in little change in the model

curves. The largest change from the Russell-Merrill para-

meters to the W-D parameters is in the coefficient of limb

darkening. This is inherently a second order effect, however,

and should affect the model curves very little.



-174-

The Primary Star

Several questions arise from the model presented in

Chapter VII. If a polar hot source is present, how does

material get to the poles? Obviously, the polar brightening

due to rotation would be a constant effect, not changing from

cycle to cycle as do these observations. Why is the angle

(the polar extent of the source) relatively constant?

The most reasonable explanation for the polar source

region involves a magnetic field for the primary star. Ioni~ed

material from the gaseous stream can then be pulled up out of

the equatorial plane and impact the poles. The heating

causing the polar source regions would be very similar to

auroral activity on the earth. If such activity exists, it

must be a rather constant feature of the U Cephei system, so

long as mass transfer is in progress. During quiescent

stages of the system, insufficient material is pulled up to

the poles to create noticeable amounts of added light. During

outbursts, however, the mass transfer rate may be one or two

orders of magnitude greater than normal, and the extra light

due to the shock heating at the poles becomes evident.

Batten (1974) has estimated that as little as ten charged

particles per cubic centimeter would be required to produce

the emission features he observed prior to the 1974 event.

The energy requirements for the infalling material are

reflected in the mean velocities of Table 23. If these ex-

ceed the mean impact velocities of particles in the gaseous

stream, then serious problems arise with the model. Particle
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trajectory models (Rafert, 1977) for stars with parameters

close to the U Cephei system indicate that for thermal boil-

off of material from the inner Lagrangian point, impact

velocities of 40-50% of the synchronous velocity are expected.

For U Cephei this amounts to 24-30 km/s , substantially

greater than all but the most photometrically active night

(10 November 1974)

.

The model was able to account for cycle to cycle varia-

tions by simply moving the source region a small amount in

longitude. The shift in longitude may be explained as an

effect of the rotation of the primary star. For example, the

shift between 10 and 15 November 1974 was about ten degrees.

During these two cycles the model primary star rotated eight

times. If the true rotation rate were, however, 8 1/36 per

two cycles or 4 1/72 times the synchronous rate, then the

true rotation rate explains the apparent shift in longitude

of the source region. The difference between this rotation

rate and the rate assumed for the model (i.e., four times the

synchronous rate) , is less than one kilometer per second.

Much more data would be required before a quantitative analy-

sis of this shift could be done.

The shape of the source regions in the model is certainly

a simplifying assumption. One source of error is undoubtably

the sharp boundary of the source region. The models consis-

tently gave a value to 6 of approximately 65°. If the source

regions are caused by infalling material along the magnetic

field lines, then one expects the impact region to be
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symmetric about the magnetic poles. The results of the model

may be telling us that the magnetic poles of U Cephei are

tilted with respect to the perpendicular to the orbital plane

by about 12°.

One good observational check can be made on the polar

hot source hypothesis. If the source rotates with the star

as was assumed, then periodic extra light should appear in

the light curve. Since the rotation rate of the primary star

is not exactly an harmonic of the orbital period, we would

expect this extra light to migrate in the light curve. Ob-

servations over lh years may show the peaks of extra light

somewhat broadened from their true shape. The excess light

may also disappear periodically as the mass transfer rate

diminishes. With a synodic rotation rate of approximately

four times the synchronous rate, extra light should appear

during both eclipses and at quadratures. Some evidence for

this trend is apparent in Figure 26, which shows the residuals

of the normal points from the Russell-Merrill solution. The

polar hot source may be responsible for the non- conformity

of the secondary eclipse. The expected shape of the excess

light in secondary eclipse would be one broad peak of the

same extent in phase as both peaks in primary eclipse com-

bined.

The Chronology of the Outburst

Table 23 gives some information about the progress of an

outburst. The early outburst may show an equatorial spot of
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equal brightness to the polar spot as evidenced by 25 Septem-

ber 1975. As the outburst continues, the polar source becomes

dominant. Occasionally, the polar source may be accompanied

by attenuating material about the primary star. On a time

scale of 2-4 months, the polar source disappears and an

attenuating cloud may be established. The attentuating cloud

may not be permanent but may survive for some months past the

disappearance of the polar source.

Future Research

The model presented in this dissertation, while simple

in design, is very flexible for modeling abnormal surface

brightness distributions on components of close binary sys-

tems. The success of the model is evident in the vast range

of residual profiles for which the model is applicable. The

future success of the model will depend on its continued

ability to account for the observations. If the conclusions

in this chapter have any validity, then this model can be

applied to future outbursts. In obtaining data to confirm

these conclusions, it will be important to observe the entire

primary eclipse. Observations of secondary eclipse will

serve as an important check. Definitive conclusions may be

drawn about the validity of this or other models for U Cephei

if the entire light curve could be obtained in a short time

during an outburst.
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